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Abstract A microsatellite consensus map was constructed
by joining four independent genetic maps of bread wheat.
Three of the maps were F;-derived, doubled-haploid line
populations and the fourth population was ‘Synthetic’ x
‘Opata’, an Fg-derived, recombinant-inbred line popula-
tion. Microsatellite markers from different research groups
including the Wheat Microsatellite Consortium, GWM,
GDM, CFA, CFD, and BARC were used in the mapping.
A sufficient number of common loci between genetic
maps, ranging from 52 to 232 loci, were mapped on
different populations to facilitate joining the maps. Four
genetic maps were developed using MapMaker V3.0 and
JoinMap V3.0. The software CMap, a comparative map
viewer, was used to align the four maps and identify
potential errors based on consensus. JoinMap V3.0 was
used to calculate marker order and recombination
distances based on the consensus of the four maps. A
total of 1,235 microsatellite loci were mapped, covering
2,569 cM, giving an average interval distance of 2.2 cM.
This consensus map represents the highest-density public
microsatellite map of wheat and is accompanied by an
allele database showing the parent allele sizes for every
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marker mapped. This enables users to predict allele sizes
in new breeding populations and develop molecular
breeding and genomics strategies.

Introduction

The value of crop species genetic maps has steadily
increased from when they were first introduced in the
1980s. Wheat molecular genetic maps first comprised
RFLP markers (Chao et al. 1989; Devos et al. 1993; Devos
and Gale 1997) and over time, PCR-based markers
became the dominant marker type for genetic map
construction, including RAPDs (Williams et al. 1990),
AFLPs (Vos et al. 1995), and microsatellites (SSRs; Roder
et al. 1998; Pestsova et al. 2000; Gupta et al. 2002). The
primary reason to shift toward PCR-based markers and
particularly SSR marker maps is the potential to use the
maps in plant breeding (Gupta and Varshney 2000).
Conventional plant breeding requires the analysis of
thousands of plants in a short time period at low cost.
Microsatellite markers and high-throughput capillary
electrophoresis are good platforms upon which to imple-
ment marker-assisted selection (MAS) in breeding pro-
grams.

Molecular breeding is more effective if the molecular
map is densely populated with markers. This provides
molecular breeding strategies with more choice in the
quality of markers and more probability of polymorphic
markers in an important chromosome interval. The first
microsatellite map in wheat possessed 279 microsatellites
(Roder et al. 1998). This marker density is useful for QTL
and gene mapping, but is limiting for the precise transfer
of QTLs between different genetic backgrounds. Specifi-
cally, the limitation comes from the lack of polymorphic
markers immediately flanking QTLs.

Wheat genomics research is increasing the use of
genetic maps, particularly in map-based gene cloning
efforts. Map-based cloning requires an accurate, fine
genetic map to correctly position a gene of interest
between close flanking markers (Peters et al. 2003).


http://dx.doi.org/10.1007/s00122-004-1740-7
http://dx.doi.org/10.1007/s00122-004-1740-7

1106

Beginning with a robust, high-density map, the efforts to
add more markers for fine mapping are greatly improved
and narrows the number of possible BAC clones
harbouring the gene.

Since single-wheat mapping populations vary in their
level of polymorphism (typically 20-40%), there is a
limitation in the number of markers that can be added to
the map. The International Triticea Mapping Initiative
(ITMI) population (‘Synthetic’/‘Opata’) is one of the most
polymorphic wheat mapping populations and has been
extensively mapped with RFLP, AFLP, and SSR markers
(Nelson et al. 1995; Roder et al. 1998) (http://wheat.pw.
usda.gov). Although the current ITMI map has a high
marker density, it is made up primarily of RFLP markers,
which are not amenable to high-throughput molecular
breeding strategies. In order to raise the density of
microsatellite markers available on a wheat genetic map,
a microsatellite consensus map could be constructed. This
is done by mapping several common microsatellites on
each chromosome in different mapping populations, such
that this subset of markers anchors the chromosome maps
from different populations. This approach derives a single
genetic map constructed by the consensus of marker order
and recombination distances.

In this study, four genetic maps were fused to derive a
consensus map. The ITMI mapping population is one of
the genetic maps, and thus the final consensus map is
related to previous maps of this population. The final
consensus map included 1,235 microsatellite markers,
which is a significant improvement over single-population
genetic maps and provides a new tool for wheat breeding
and genomics research.

Materials and methods
Mapping populations

There were four mapping populations integrated into a
single consensus map that are summarized in Table 1. The
parents and number of lines mapped in the four mapping
populations are ‘Synthetic’/‘Opata’ [SO, 68 recombinant-
inbred lines (RIL) lines], ‘RL4452°/*AC Domain’ (RD, 91
DH lines), ‘Wuhan’/‘Maringa’ (WM, 93 DH lines), and
‘Superb’/*‘BW278” (SB, 186 DH lines). The SO popula-
tion was developed for ITMI with the purpose of having a
shared mapping population among wheat scientists. The
other three populations were developed at Agriculture and

Agri-Food Canada to serve specific needs in trait analysis
and QTL mapping. Additional Triticum aestivum acces-
sions included ‘Chinese Spring’ (CS) and 21 nullisomic/
tetrasomic (NT) lines of CS. The DNA of each accession
and progeny line was extracted from leaf tissue of single
plants using the DNeasy Plant DNA extraction kit
(Qiagen, Mississauga, Ont., Canada).

Microsatellite primer sequences

There are several sources of wheat microsatellite primer
sequences available in the public domain and these are
listed in Table 2. The Wheat Microsatellite Consortium
(WMC) was a private effort coordinated by Dr. P. Isaac
(IDnagenetics, Norwich, UK) and included 38 members.
The majority of the WMC primer sequences were made
publicly available in January 2004; the remainder of the
WMC markers become available in January 2006. There
was a small subset of WMC markers not available to the
public and excluded from the accompanying database, but
they are included in the final consensus map. The BARC
markers (Song et al. 2002) were developed for the US
Wheat and Barley Scab Initiative to map and characterize
genes for fusarium resistance. The CFA and CFD markers
were kindly provided by Dr. P. Sourdille (INRA). The
GWM and GDM markers are taken from the publication
by Roder et al. (1998) and Pestsova et al. (2000),
respectively. Microsatellite primers were synthesized by
the National Research Council (Dr. D. Tessier, Montreal,
Que., Canada) and were diluted to 1-10 pmol/ul,
depending on the detection method to be used.

Chinese spring NT analysis

The WMC markers were amplified in the CS/NT series in
order to assign specific alleles to chromosomes prior to
genetic mapping. The PCR conditions were: 24 ng DNA,
1.5 mM MgCl,, 50 mM KCI, 0.8 mM dNTPs, 2 pmol y-
[**P]-dATP-labelled forward primer, 2 pmol reverse
primer, and 0.5 U 7ag DNA polymerase (Promega,
Madison, Wis., USA). Thermal cycling included: 94°C,
2 min; 30 cycles of 95°C, 1 min (0.5°C/s to 61/51°C);
61/51°C, 50 s (0.5°C/s to 73°C); 73°C, 1 min; 1 cycle
73°C, 5 min. PCR products were separated by electro-
phoresis in 0.4 mm x 50 cM, 4% polyacrylamide (1x
TBE) gels, and followed by autoradiography.

Table 1 Summary of four mapping populations used to construct the microsatellite consensus map of Triticum aestivum

Mapping parents Population type*

Number of lines

Trait segregation®

‘Synthetic’/*Opata’ F¢ RIL 68 Various

‘RL4452°/*AC Domain’ DH 91 Quality/agronomy/disease
‘Wuhan’/‘Maringa’ DH 91 FHB

‘Superb’/*'BW278’ DH 186 Yield/FHB

aRIL Recombinant-inbred lines, DH F;-derived doubled haploid lines
Represents the primary traits segregating in the population



Table 2 Summary of publicly
available wheat microsatellites
used in this study
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Microsatellite developer

Microsatellite code

Quantity available

Public source

WMC* WMC 423 http://wheat.pw.usda.gov
Marion Réder (IPK) GWM 279 Roder et al. (1998)
Marion Réder (IPK) GDM 55 Pestsova et al. (2000)
Perry Cregan (USDA) BARC 166 http://www.scabusa.org
Pierre Sourdille (INRA) CFA 55 http://wheat.pw.usda.gov
) ) Pierre Sourdille (INRA) CFD 130 http://wheat.pw.usda.gov

*Wheat Microsatellite Consor-

. Total 1,108

tlum

Segregation data collection ‘RIPPLE’ commands were used to add markers to

Segregation data for part of the SO map and all of the WM
map were collected using v-[>*P]-dATP end-labelled
primers and PCR as described above. Segregation data
for the remainder of the SO map and all of the RD and SB
maps were collected using M13 tailing and fluorescent
capillary electrophoresis on an ABI3100 genotyper
(Applied Biosystems, Foster City, Calif.,, USA). MI13
tailing required adding the MI13 sequence (CAC-
GACGTTGTAAAACGAC) to the 5" end of the forward
primer during primer synthesis (Schuelke 2000). The PCR
conditions were: 24 ng DNA; 1.5 mM MgCl,; 50 mM
KCI; 0.8 mM dNTPs; 2 pmol reverse primer; 0.2 pmol
forward primer; 1.8 pmol M13 primer (CACGACGTTG-
TAAAACGAC) fluorescently labelled with 6-FAM, VIC,
NED, or PET (Applied Biosystems); and 0.5 U Tag DNA
polymerase (Promega). Thermal cycling included: 94°C,
2 min; 30 cycles of 95°C, 1 min (0.5°C/s to 61/51°C);
61/51°C, 50 s (0.5°C/s to 73°C); 73°C, 1 min; and 1 cycle
73°C, 5 min. The internal molecular weight standard for
the ABI3100 was Genescan 500-LIZ (Applied Biosys-
tems). Data collected by fluorescent capillary electropho-
resis were first converted to a gel-like image, using
Genographer (available at http://hordeum.oscs.montana.
edu/genographer).

The microsatellite allele sizes from the mapping parents
were measured on the ABI3100 and recorded without the
19-bp M13 tail, in a database accompanying the consensus
map (available at http://wheat.pw.usda.gov).

Genetic map construction

The CS/NT analysis showed the likely physical location of
the WMC markers, and this information was used to
anchor the chromosomes of the SO map. GWM marker
segregation data produced by Roder et al. (1998) for the
SO map are available at http://wheat.pw.usda.gov, and this
information was also used to anchor the linkage groups of
the SO map to chromosomes. The individual lines of the
SO population mapped in this study were the same as
those mapped by Roder et al. (1998). Table 4 shows which
populations were used to map each of the marker
collections. Each of the four genetic maps was constructed
separately using MapMaker V3.0 (Lander et al. 1987,
Lincoln et al. 1993), with an LOD threshold of 2.5 and
maximum recombination fraction of 0.35. The ‘“TRY’ and

framework maps and check the final marker order.
Recombination distances were determined using the
Kosambi mapping function (Kosambi 1944).

Consensus map construction

JoinMap, version 3.0 (Biometris, Wageningen, The
Netherlands, http://www.joinmap.nl), was used to con-
struct the wheat microsatellite consensus map. First,
JoinMap was used to calculate the individual genetic
map distances and marker orders using the raw segregation
data and Kosambi mapping function (Kosambi 1944), and
then, was used to calculate the consensus map. Second, the
comparative mapping program CMap (http://www.gmod.
org/cmap), developed by Lincoln Stein, was used to align
the four genetic maps with the consensus map for a visual
inspection of the maker order. Third, an alignment of the
individual Mapmaker- and JoinMap-derived maps was
made for each chromosome using CMap. The CMap
comparisons were used to identify errors in the individual
genetic maps based on consensus. These errors typically
included incorrect marker orders over short 10-cM
intervals or localized inversions of linkage blocks flanked
by gaps in the maps. The individual genetic map
segregation data were checked for errors, and the final
version of each genetic map was constructed with
JoinMap. Finally, the marker order and recombination
distance displayed in the consensus map was based on the
corrected individual maps as calculated by JoinMap.

Results

The consensus map covered 2,569 cM, included 1,235
microsatellite markers, and did not contain linkage gaps.
There were several large linkage distances, notably on the
A genome, and these linkages were also observed in the
individual genetic maps (Fig. 1). Included on the map are
several ESTs mapped via a PCR that interrogates a single
nucleotide polymorphism (SNP) between two mapping
parents. The ESTs are indicated by Genebank accession
number-nucleotide position of the SNP (Somers et al.
2003b). Further, several genes for disease resistance,
storage proteins, and plant height are indicated since these
loci segregated as Mendelian factors in at least one
population. The microsatellite markers are colour coded
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by source to facilitate identification of a specific marker by
name. There are characteristic clusters of microsatellites
near the centromere of each chromosome. A shaded zone
on each chromosome indicates the approximate position of
the centromere based on comparative mapping to both
physical and genetic maps of RFLP and microsatellite
markers available at GrainGenes (http://wheat.pw.usda.
gov). In a separate study, approximately 250 WMC and
GWM microsatellites from the consensus map were
physically mapped into chromosome bins, using the
disomic deletion stocks of CS (Endo and Gill 1996; data
not shown). This facilitated an improved ordering of
markers around the centromere and helped with correct
positioning of the centromere (Fig. 1).

The density of markers on the map ranged from 1.2 cM/
marker on 4B to 4.1 cM/marker on 6A, with an average
density of 2.2 cM/marker. There was variation in marker
density on the basis of homoeologous group, ranging from
1.6 cM/marker for group 3 to 2.6 cM/marker for group 5
chromosomes. The A-, B-, and D-genome chromosomes
had genetic lengths of 944, 851, and 778 ¢cM, with marker
densities of 2.6, 1.7, and 2.1 cM/marker, respectively. The
length of the chromosomes ranged from 59 ¢cM (4B) to
184 ¢cM (5A) (Table 3).

The program CMap was used to summarize the number
of markers mapping to homoeologous positions in the
genome. There were 16, 17, 12, 6, 13, 10, and 3 markers
mapping to more than one homoeologue in the group 1
through 7 chromosomes, respectively. There were 143
markers mapping to at least two non-homoeologous
(paralogous) positions in the genome. The proportion of
BARC, CFA/CFD, GWM, and WMC markers amplifying
paralogous loci ranged from 14.2% to 18.6%. The
proportion of GDM markers amplifying paralogous loci
was 9.5% (Fig. 1).

The eight mapping parents are included in a database
that records the allele size, excluding the M13 tail, for each
parent for each mapped marker. The M13-tailing method
described would add 19 bp to each allele size. A
comparison was made among the four populations with
respect to the differences in parent allele size across all the
mapped loci. Genetically, wide crosses such as SO and RD
with >40% polymorphism had greater differences in
parent allele size compared to genetically narrow crosses
such as SB and WM with <40% polymorphism. Over all
populations, WMC markers had the greatest parent allele-
size differences (12.2 bp) compared to BARC markers
with the lowest parent allele-size difference (9.0 bp).
Allele pairs differing by 4 bp or less between mapping
parents occurred on average at 38% of the mapped loci,
with a tendency of genetically narrow crosses (SB and
WM) to have a larger fraction of parent allele pairs at 4 bp
or less (Table 4). The GWM and CFA/CFD markers had
the largest fraction of markers, with parent allele pairs of
4 bp or less. There were 402 microsatellite loci mapped to
at least two of the four mapping populations. An allele pair
of 4 bp or less between parents from different crosses was
observed for 245 (61%) of the 402 microsatellite loci.

Fig. 1 A microsatellite consensus map of bread wheat (Triticum p
aestivum) derived from four independent genetic maps using
JoinMap, version 3.0, and CMap. Functional genes and phenotypic
loci are identified in italics. ESTs (black) are identified by Genebank
accession number, followed by the position of a SNP within the
EST. The remainder of the loci are microsatellite markers and are
colour coded by microsatellite source (red Wheat Microsatellite
Consortium, green GWM/GDM, cyan CFA/CFD-cyan, blue
BARC). Loci that cosegregated are grouped beside a vertical line
on the right side of the chromosome. Microsatellites amplifying two
mapped loci on a single chromosome have the suffix “.1,” or “.2”.
Numbers on the left show the distance in centiMorgans from the top
of each chromosome. (The allele database is available at http://
wheat.pw.usda.gov.) The accompanying database of microsatellite
alleles from 1,235 loci includes the locus name (microsatellite), the
chromosome, primer sequences, followed by the size of the allele (in
base pairs) amplified from ‘Opata’, ‘Synthetic’, ‘AC Domain’,
‘RL4452°, ‘BW252°, ‘BW278’, ‘Wuhan’, and ‘Maringa’. Null
indicates the marker was not codominant and only one allele was
identified. Alleles listed in more than one pair of parents indicate the
marker was mapped in more than one cross. All allele sizes are
shown as they were amplified using the untailed primers

Table 3 The distribution and density of microsatellite markers
across the 21 wheat chromosomes of the consensus map

Chromosome No. of Genetic Marker density (cM/
markers length marker)
1A 44 126 29
1B 75 111 1.5
1D 51 117 23
2A 62 143 2.3
2B 76 123 1.6
2D 61 107 1.8
3A 49 116 24
3B 88 148 1.7
3D 57 79 1.4
4A 53 88 1.7
4B 49 59 1.2
4D 34 91 2.6
SA 62 184 3.0
5B 77 173 22
5D 76 120 1.5
6A 38 156 4.1
6B 50 82 1.6
6D 35 110 3.1
TA 62 131 2.1
7B 68 151 2.2
7D 69 154 22
A genome 369 944 2.6
B genome 483 847 1.7
D genome 383 778 2.1
Group 1 170 354 2.0
Group 2 198 373 1.9
Group 3 194 343 1.6
Group 4 136 238 23
Group 5 215 477 2.6
Group 6 123 348 2.3
Group 7 199 436 2.2
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density that makes the map useful in plant breeding and
physical mapping (Fig. 1; Table 3). Consensus maps have
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Fig. 1 (continued)

been produced before for beans and cowpeas (Kelly et al.
2003), barley (Thiel et al. 2003; Karakousis et al. 2004),
and wheat (Gale et al. 1995; Appels 2003) based on RFLP
and microsatellite markers. The present map represents the
highest density public microsatellite map of wheat.
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The four maps underpinning the current wheat con-
sensus map were all constructed at an LOD >2.5 with 52
to 232 loci in common between the genetic maps. Given
the population sizes of 68 (SO) to186 (SB) progeny, there
could be some disagreement in the order of closely linked
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Fig. 1 (continued)

markers between the maps within some chromosome
intervals. In smaller populations, the chance that informa-
tive recombinant progeny lines are present in the popu-
lation to accurately position markers is lower than in larger
populations. The disagreements in marker order of closely
linked markers between genetic maps and derivation of the
most correct marker order can be facilitated by construc-
tion of the consensus map. Users of the microsatellite

Table 4 Comparison of allele
size differences among mapping
parents and microsatellite
sources. SE Standard error

2SO ‘Synthetic’/‘Opata’

‘RL4452°/*AC Domain

, RD

>, SB

‘Superb’/‘BW278°, WM ‘Wu-

han’/*Maringa’
SND No data available
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gwm 180
cfa2104 cfd189
gwm205

cfd78

wmc150
barc143

cfdg1

cfd67 gwm358
gwm1t gwm159
wmcB08
wmc318
wmcB05
gdm153
cfd266 wmc799
cfd40

barc49
gdm138
wmcd405

gwm182 wmcE30
cfd?

cid3 wme818

cfd57 cfd102

gwm174 cfd26

wmcZ89

gwm121

gwm271
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gwm292

wmc264 gwm212 wmeds
wmcd 34

cfd156
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wmcB36 wmcd7
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barc232 wme206 cfa2141 gdm6a
wmo3sT

gwm469 wmc96
wmeTG5

wm2eo

arc144
gwms85
gwm272
wimcd43
gwmGsd
Lr1

consensus map must consider that the marker order is
conditioned by the populations used and the position of
crossovers along chromosomes within the progeny lines.
The exact fine marker order may differ slightly in other
populations, and users should be prepared to establish the
order for closely linked markers in their mapping and
breeding populations.

Marker source Population® Marker source (average = Markers <4 bp
Allele pair difference (bp) SD) (%)
SO RD SB WM

WMC 13.9 16.1 10.1 87 12.24£3.4 36

BARC 11.8 63 88  ND° 9.0428 34

CFA/CFD 14.2 ND 8.8 ND 11.5+£3.8 40

GDM 11.2 10.6 7.7 10.6  10.0£1.6 27

GWM 14.3 5.8 11.8  11.8 10.943.6 41

Population (average 12.9 13.3 9.1 9.4 11.2£2.2 38

+SD) +139 £27.1 112 *109

Markers <4 bp (%) 31 42 46 44 38
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The length of the consensus map (2,569 cM) was larger
than the four individual genetic maps, which had lengths
of 2,332 ¢cM (SO), 2,211 cM (RD), 2,166 cM (WM), and
1,836 ¢cM (SB). The SO map is based on an F¢-derived
RIL population, while the other three maps are all F;-
derived DH populations. The SO map should be longer in
length due to the increased number of meioses and
opportunity for recombination. The SB map consisted of
just 20 chromosomes and was a genetically narrow cross;
thus, it is the shortest of the four maps.

The GDM and CFD markers (which are D genome-
specific markers) provided an improved marker density on
the D genome relative to the maps of Roder et al. (1998)
and Pestsova et al. (2000) (Fig. 1). Further, 9.5% of the
GDM markers amplified paralogous loci on the consensus
map compared to 14.2-18.8% of the markers from the
other sources. This is consistent with the expectation that
microsatellites derived from a diploid progenitor species
will be more genome specific, although it is unexplained
as to why 18.8% of the CFD markers amplified paralogous
loci on the consensus map. There were 863 microsatellite
markers used to amplify and map 1,235 microsatellite loci,
which indicated the vast majority of the microsatellite
primer pairs amplified only one polymorphic allele pair
from the parents.

The primary use of the consensus map is in molecular
mapping of traits and plant breeding. The precise marker
order over short chromosome intervals (<10 cM) may not
be that important to make plant selections. The marker
order between 10 cM bins along the chromosome is more
important in order to detect recombination events in
gametes and make proper plant selections. The consensus
map provided a large number of markers along the length
of the chromosome that can be used to genotype
individuals for detecting recombinants, fixing loci, restor-
ing a recurrent genetic background, or assembling com-
plex genotypes in complex crosses (Gupta et al. 1999;
Huang et al. 2003).

The microsatellite consensus map is employed in the
AAFC wheat breeding and genomics programs to
assemble complex genotypes including pyramiding of up
to eight separate loci. In addition, the consensus map is
routinely used to perform bulked segregant analysis
(Michelmore et al. 1991; McCartney et al. 2003), QTL
mapping (Somers et al. 2003a), and genome scanning.
Backcross populations are examined to select individuals
with the highest restoration of an elite genetic background.
In one representative experiment, 80 individuals from a
BC;F; population were genotyped, with 70 markers
distributed across the genome. Plants were selected with
>70% fixation of the recurrent parent alleles (data not
shown). These activities are possible because of the high
density of the genetic map, the quality of microsatellite
markers, and accurate description of microsatellite alleles.

The marker density on the consensus map can provide a
better choice of markers for specific breeding populations
to ensure adequate polymorphic marker coverage in
regions of interest. Further, the marker density on the
consensus map is likely sufficient to perform association
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mapping and possibly linkage disequilibrium (LD) studies
on germplasm collections. There were a sufficient number
of markers distributed over the genome, which amplified
single loci only or low complexity profiles that are well
suited for association mapping and LD studies (Fig. 1;
Table 3). These types of markers would avoid the
confusion of scoring alleles amplified from parologous
or homoeologous loci, which is a concern in a polyploid
species such as wheat.

A database of allele sizes is provided at http://wheat.pw.
usda.gov so users can consider the approximate size of
DNA fragments in their breeding parents and populations
and how best to use the map to develop molecular
breeding strategies. This present study provided insight
into the variation in allele size between mapping parents,
which may be extended to other parents and breeding
populations. A parent allele difference of 4 bp was chosen
as a reference point since this is approximately the limit of
resolution of microsatellite alleles on agarose gels, but
which can be resolved on polyacrylamide gels or by
capillary electrophoresis. The data showed a substantial
proportion of the microsatellites (38%) have parent allele-
pair differences of 4 bp or less. Thus high-resolution
polyacrylamide or capillary electrophoresis is essential to
make use of the large collection of markers and the
consensus map. The allele pairs among all eight mapping
parents had a size difference averaging 11.2 bp. Further,
when allele size was compared across mapping popula-
tions, 61% of the markers had at least one allele pair
differing by 4 bp or less (Table 4). This indicated that the
consensus map and associated allele database can be used
in concert to select markers distributed over the genome
and to predict the approximate allele sizes in unknown
breeding populations mapping to the expected chromo-
some region.

The allele database directs the user toward the expected
PCR-fragment size to be detected by electrophoresis.
Many of the microsatellite primer pairs amplified com-
plex, multilocus profiles, and the allele size become
important information in order to know which fragment
maps to which locus. Although the M13-tailing technique
was used for most of the genotyping underpinning the
consensus map, the allele database reports the allele size as
it would appear using a conventional silver-staining or
radioisotope-detection platform. The M13-tailing method
is very cost effective in that primers are not directly
labelled with fluors, but rather are tailed with 19 additional
nucleotides (Schuelke 2000). In this way, any primer pair
can be fluorescently labelled with any dye colour. This can
be important when trying to match more robust micro-
satellites with weaker fluors in complex pooling strategies.

In summary, the microsatellite consensus map brings
together large collections of publicly available micro-
satellites onto a single genetic map derived by joining four
independent genetic maps. There are still hundreds of
microsatellite markers in the public domain that could be
added to the present consensus map. Future prospects
include adding more microsatellite and SNP-based
markers to the consensus map, a thorough alignment to



1114

the physical map of wheat, as well as implementation of
the map in haplotype diversity studies of bread wheat.
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